(2x^1)(3x+2)=x+292

Simple and best practice solution for (2x^1)(3x+2)=x+292 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2x^1)(3x+2)=x+292 equation:


Simplifying
(2x)(3x + 2) = x + 292

Remove parenthesis around (2x)
2x(3x + 2) = x + 292

Reorder the terms:
2x(2 + 3x) = x + 292
(2 * 2x + 3x * 2x) = x + 292
(4x + 6x2) = x + 292

Reorder the terms:
4x + 6x2 = 292 + x

Solving
4x + 6x2 = 292 + x

Solving for variable 'x'.

Reorder the terms:
-292 + 4x + -1x + 6x2 = 292 + x + -292 + -1x

Combine like terms: 4x + -1x = 3x
-292 + 3x + 6x2 = 292 + x + -292 + -1x

Reorder the terms:
-292 + 3x + 6x2 = 292 + -292 + x + -1x

Combine like terms: 292 + -292 = 0
-292 + 3x + 6x2 = 0 + x + -1x
-292 + 3x + 6x2 = x + -1x

Combine like terms: x + -1x = 0
-292 + 3x + 6x2 = 0

Begin completing the square.  Divide all terms by
6 the coefficient of the squared term: 

Divide each side by '6'.
-48.66666667 + 0.5x + x2 = 0

Move the constant term to the right:

Add '48.66666667' to each side of the equation.
-48.66666667 + 0.5x + 48.66666667 + x2 = 0 + 48.66666667

Reorder the terms:
-48.66666667 + 48.66666667 + 0.5x + x2 = 0 + 48.66666667

Combine like terms: -48.66666667 + 48.66666667 = 0.00000000
0.00000000 + 0.5x + x2 = 0 + 48.66666667
0.5x + x2 = 0 + 48.66666667

Combine like terms: 0 + 48.66666667 = 48.66666667
0.5x + x2 = 48.66666667

The x term is 0.5x.  Take half its coefficient (0.25).
Square it (0.0625) and add it to both sides.

Add '0.0625' to each side of the equation.
0.5x + 0.0625 + x2 = 48.66666667 + 0.0625

Reorder the terms:
0.0625 + 0.5x + x2 = 48.66666667 + 0.0625

Combine like terms: 48.66666667 + 0.0625 = 48.72916667
0.0625 + 0.5x + x2 = 48.72916667

Factor a perfect square on the left side:
(x + 0.25)(x + 0.25) = 48.72916667

Calculate the square root of the right side: 6.980627957

Break this problem into two subproblems by setting 
(x + 0.25) equal to 6.980627957 and -6.980627957.

Subproblem 1

x + 0.25 = 6.980627957 Simplifying x + 0.25 = 6.980627957 Reorder the terms: 0.25 + x = 6.980627957 Solving 0.25 + x = 6.980627957 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.25' to each side of the equation. 0.25 + -0.25 + x = 6.980627957 + -0.25 Combine like terms: 0.25 + -0.25 = 0.00 0.00 + x = 6.980627957 + -0.25 x = 6.980627957 + -0.25 Combine like terms: 6.980627957 + -0.25 = 6.730627957 x = 6.730627957 Simplifying x = 6.730627957

Subproblem 2

x + 0.25 = -6.980627957 Simplifying x + 0.25 = -6.980627957 Reorder the terms: 0.25 + x = -6.980627957 Solving 0.25 + x = -6.980627957 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.25' to each side of the equation. 0.25 + -0.25 + x = -6.980627957 + -0.25 Combine like terms: 0.25 + -0.25 = 0.00 0.00 + x = -6.980627957 + -0.25 x = -6.980627957 + -0.25 Combine like terms: -6.980627957 + -0.25 = -7.230627957 x = -7.230627957 Simplifying x = -7.230627957

Solution

The solution to the problem is based on the solutions from the subproblems. x = {6.730627957, -7.230627957}

See similar equations:

| 2x^2+8*x-10=0 | | 2x^2+8*x=0 | | -2(9-8x)-2(x-1)=10x | | (sin(x))+(2(cos(2y)))=1 | | 5+0.08x=32 | | 3g-2/3 | | 2421500=(50625*h)/3 | | 4p-7+6p+10=0 | | 25z=.125 | | 3x+3(2x-3)=-117 | | Z+25=.125 | | M+5.2=14 | | 16(-n+8)=3n+14-2n | | 3/3/4n=.75 | | (m*15)+(m+6)=42 | | N+2/3=54 | | 17+8x=-11+9x | | 6x+7=-49 | | -3(3y+5)-1=-6(y+4)+3y | | 2/3n=-54 | | T=3/4 | | 7.68y=-114.98496 | | R+5=.3 | | 5(x+1)=5(x+7) | | d-8/3=-14 | | 5r=.3 | | x^4/3-5=11 | | 7.68=-114.98496 | | 1/9n=126 | | (x^2+30)+(6x-10)=180 | | -ix^2+2x+5i=0 | | 3x-2y+4=x-14 |

Equations solver categories